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a b s t r a c t

Risk assessment and management of transportation of hazardous materials (HazMat) require the esti-
mation of accident frequency. This paper presents a methodology to estimate hazardous materials
transportation accident frequency by utilizing publicly available databases and expert knowledge. The
estimation process addresses route-dependent and route-independent variables. Negative binomial
regression is applied to an analysis of the Department of Public Safety (DPS) accident database to
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derive basic accident frequency as a function of route-dependent variables, while the effects of route-
independent variables are modeled by fuzzy logic. The integrated methodology provides the basis for an
overall transportation risk analysis, which can be used later to develop a decision support system.

© 2009 Elsevier B.V. All rights reserved.
egative binomial regression
uzzy logic model

. Introduction

More than 3.1 billion tons of hazardous materials (HazMat) are
hipped annually in the United States [1]. According to Department
f Transportation (DOT) statistics, 156,442 HazMat transportation
ccidents occurred from 1995 to 2004, resulting in a total of 221
atalities and 3143 injuries [2]. The public, along with agencies such
s the DOT and the Federal Emergency Management Administra-
ion, show an increasing concern with the risks associated with
azMat transportation. Few regulations and rules have been set

o regulate HazMat transportation activities. In fact, existing regu-
ations mainly address hardware and procedures, and compliance

ith those regulations does not necessarily guarantee the desired
eduction in the level of risk. Notably, a significant reduction may be
ained by selecting the route with relatively less risk. Selection of
he best route for HazMat transportation involves comparing alter-
atives in the domain of risk. This optimization approach is possible
s long as risk can be quantified.
Risk is a combination of two parameters: frequency and the mag-
itude of the consequence; thus, accident frequency estimation is
ssential for risk analysis. Currently, the most popular data cited for
ccident frequency takes only a few factors into consideration. This

∗ Corresponding author. Tel.: +1 515 294 2580 (ABE)/5685 (HCI);
ax: +1 515 294 1123.

E-mail address: nir@iastate.edu (N. Keren).

304-3894/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.jhazmat.2009.01.097
paper presents a methodology to estimate the accident frequency
for different types of roads by incorporating the effects of a larger
number of parameters, including the nature of truck configurations,
operating conditions, environmental factors, and road conditions.

2. Background

2.1. Accident frequency assessment

Accident frequency can be defined as the number of accidents
per unit of road (mile, kilometer, etc.). The frequency can be com-
puted by dividing the number of accidents by the number of vehicle
miles, which is the corresponding exposure measure of opportuni-
ties for an accident to occur.

There are three basic options to assess accident frequency with
reasonable accuracy. The first is to obtain at least one database and
analyze both accident data and travel data for the specific condi-
tions under investigation (assuming that the dataset is structured
to support distinctions between the desired variables). The second
option is to access state databases for specific routes. Frequently,
states have accident data and travel data for major state highways.
A third option is to use an existing limited analysis of databases and

apply the results to a specific route of interest. All three options are
harnessed in this work.

Detailed analyses of several publicly available databases [3–7]
have made it possible to specify accident frequency on a per-mile
basis. One of the most detailed analyses of such data was con-

http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:nir@iastate.edu
dx.doi.org/10.1016/j.jhazmat.2009.01.097


dous M

d
d
H
n
t
t
N
d
(
u
b
r
a
a
i
c
c

d
i

2

s
s
a
a
d
m
c

c
b
s
s
i
a
v
f
o
l
i
p
m
f

s
f
f
t

R

w
s

f
b
i
d
i
i
t

s
c

Y. Qiao et al. / Journal of Hazar

ucted by Harwood and Russell [5]. On the basis of computerized
ata files from three states – California, Illinois, and Michigan –
arwood and Russell calculated accident frequency by using the
umber of reported accidents and the total number of truck-miles
raveled. Accident frequency was assessed as a function of road
ype, truck type, and population density. In the report for Argonne
ational Laboratory [6], Harwood and Russell’s statistics were
ivided into two road categories: interstates and non-interstates
state highways), and into three population density categories:
rban, suburban, and rural. Bubbico et al. [8,9] pointed out that
oth route-independent and route-dependent parameters affect
isk, but their work did not yield a methodology for estimating
ccident frequency. The results from Argonne National Laboratory
lso failed to improve the frequency data sensitivity, in spite of
ncorporating more parameters describing the nature of the roads,
haracteristics of the trucks, environmental factors, and driver
onditions.

This paper presents an integrated methodology to estimate acci-
ent frequency by incorporating the effects of various parameters,

ncluding both route-dependent and route-independent variables.

.2. Fuzzy logic model

Conventionally, a mathematical model of a system is con-
tructed by analyzing input–output measurements from the
ystem. However, an additional important source of information
bout engineering systems is human expert knowledge, known
s linguistic information. It provides qualitative instructions and
escriptions of the system. While a conventional mathematical
odel fails to include this type of information, a fuzzy model can

onveniently incorporate it.
The core technique of fuzzy logic is based on three basic con-

epts: (1) fuzzy set: unlike crisp sets, a fuzzy set has a smooth
oundary, i.e., the elements of the fuzzy set can be partly within the
et. Membership functions are employed to provide gradual tran-
ition from regions completely outside a set to regions completely
n the set; (2) linguistic variables: variables that are qualitatively,
s well as quantitatively, described by a fuzzy set. Similar to a con-
entional set, a fuzzy set can describe the value of a variable; (3)
uzzy “if-then” rules: a scheme, describing a functional mapping
r a logic formula that generalizes an implication of two-valued
ogic. The main feature of the application of fuzzy “if-then” rules is
ts capability to perform inference under partial matching. It com-
utes the degree the input data matches the condition of a rule. This
atching degree is combined with the consequence of the rule to

orm a conclusion inferred by the fuzzy rule.
A fuzzy “if-then” rule associates a given condition to a conclu-

ion, using linguistic variables and fuzzy sets. The most common
uzzy model, the Mamdani model [10], consists of the following
uzzy “if-then” rules that describe a mapping from U1 × U2 × · · · × Ur

o W:

i : If x1 is Ai1, . . . , and xr is Air, then y is Ci (1)

here xj (j = 1, 2,. . ., r): input variables; y: output variable; Aij: fuzzy
ets for xj; Ci: fuzzy sets for y.

The relationship between the various parameters and accident
requency is difficult to express by a function; however, it is possi-
le to express the relationship among parameters using the fuzzy

f-then rules. For example, if a driver is not experienced, then acci-
ent frequency is high. This type of association can be conveniently

ncorporated into fuzzy models. This characteristic is especially

mportant, given the complexity of transportation conditions and
he level of human experience/knowledge about the system.

Fuzzy logic is a form of multi-valued logic derived from fuzzy
et theory to allow reasoning that is approximate rather than pre-
ise. Fuzzy logic is no less precise than any other form of logic;
aterials 167 (2009) 374–382 375

it is an organized and mathematically sound method of handling
inherently imprecise concepts. Fuzzy if-then rules are selected
based on previous findings or based on experts’ experience. Find-
ings from previous studies will be utilized for setting up the rules,
if the related parameters have been estimated before. For exam-
ple, as detailed in Section 2.1, the effects of parameters, including
road type and population density have been previously studied. It
is important to emphasize that when knowledge from experts is
incorporated, this knowledge may introduce subjectivity into the
categories used; however, the resulting values from the fuzzy sets
will be absolutely accurate. For example, assume that there is a need
to categorize HazMat tanks into hazardous categories. A group of
experts may define a 500 gallon tank to be low-level hazardous, a
1000 gallon tank to be moderately hazardous, and 5000 gallon tank
to be highly hazardous. Using fuzzy sets, one can determine the
level of membership of a 3500 gallon tank in the highly hazardous
category and its level of membership in the moderately hazardous
category. While one can argue that experts’ labeling categories for
tank volumes are subjective, the level of membership of a given
tank volume in any one of the groups, as determined by fuzzy
logic, is not questionable. Further explanations on subjectivity con-
trol efforts are available later. Conclusions from earlier studies are
employed when the rules related to those parameters are set up. If
there are no previous studies available, human intelligence, scien-
tific knowledge and working experience will be applied to derive
the rule set. Since fuzzy logic deals with reasoning that is approxi-
mate rather than precise, there could be some subjectivity involved
in the approach; however, it is no less precise than any other form
of logic, it applies the best available information and it will become
more precise with the increase of our understanding of the problem.

3. Methodology

3.1. Data and database analysis

Since accident frequency can be computed by dividing the num-
ber of accidents by the number of vehicle miles, both accident
and the corresponding exposure measure of vehicle-mile data are
needed to assess accident frequency.

The Hazardous Material Information System (HMIS) is the
national database of HazMat transportation accidents, encompass-
ing container types, consequences of the accidents, and other
information. However, accidents occurring on intrastate roads and
accidents not resulting in spill are not recorded in this database.
Battelle [7], in a report to the Federal Motor Carrier Safety Adminis-
tration, suggested supplementing HMIS with additional databases
that consist of data on non-spill accidents and other spill accidents
(especially intrastate accidents).

The Department of Public Safety (DPS) accident databases from
each state consist of accident data gathered from state highways.
These databases can be easily grouped based on the type of road,
which makes it relatively easy to assess the accident frequency for
a specific road. Some parameters that affect accident frequency,
specifically road and environmental conditions, are available in DPS
databases. Thus, DPS databases can be utilized to establish a model
for estimation of accident frequency by incorporating the effects of
those route-dependent parameters available in the datasets.

In addition to the number of accidents, the number of miles
traveled (exposure data) is needed. The most commonly cited expo-
sure data source is the Commodity Flow Survey (CFS) [11], which is

generated from a 5-year economic census, and was last conducted
in 2002. It provides information on commodities shipped, their
value, weight, and mode of transportation. Exposure data on state
highways can also be obtained from state DOT’s or transportation
institutes. In many cases, both the data from CFS and data from state
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Table 1
DPS accident database – sample of records of accidents occurred in US290.

COUNTY district MILE1 milepoint WEATHER SURF CON ROAD CON ROADWAY INTERSECT

101 315 1 1 0 1 4
101 356 2 2 0 1 3
101 313 1 1 0 1 2
101 332 1 1 0 1 4
101 381 2 4 5 3 4
101 364 8 4 5 3 4
101 384 8 4 5 1 4
101 308 8 4 5 3 4
101 243 8 4 5 1 4
101 211 3 1 4 9 3
101 367 2 2 2 9 3

COUNTY district: indicate county number derived from DPS County Listing.
MILE1 milepoint: control/section number. For tool way accidents, the station number is recorded. For all accidents on highways, record the control and section number as
coded from the District Control-Section Maps. Accidents not on numbered highways, code the first five characters of the street or county road name.
WEATHER: 1, clear (cloudy); 2, raining; 3, snowing; 4, Fog; 5, blowing dust; 6, smoke; 7, other; 8, sleeting.
SURF CON: surface condition, 1, dry; 2, wet; 3, muddy; 4, snowy/icy.
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OAD CON: road condition, 0, no defects; 1, holes; ruts, etc., 2, defective shoulders; 3
n road not lighted (night); 7, obstruction in road not marked (day); 8, 9, road under
OADWAY: roadway related, 1, on roadway; 2, off roadway on shoulder; 3, off roadw

NTERSECT: intersection related, 1, intersection; 2, intersection related; 3, driveway

OT’s or transportation institutes are needed to assess the exposure
ata for specific roads.

.2. Parameter analysis

Accident frequency is affected by a large number of parame-
ers such as the nature of the roads, characteristics of the trucks,
nvironmental factors, and driver conditions. Some specific risk
eduction measures that may have been implemented should also
e considered in assessing accident frequency. Previous research
as shown that considerations, such as urban versus rural and
ivided versus undivided highway, have a direct influence on
ccident frequency [5]. It is also been proposed that location-
pecific conditions, such as vehicle speed limit, topographical
onditions, excessive grade, obstructions to vision, poorly designed
ntersections, etc., can have a significant localized influence on
ccident frequency. Weather conditions, such as rain, fog, storms,
cing, wind, or tornado conditions, can also influence accident
requency. Similarly, driver training programs, fleet maintenance,
peed monitoring, driver stress level, driver drinking-habits, and
ther characteristics specific to an individual carrier can influence
ccident frequency [4].

Based on the variables available in the databases (see Section
.1), the following two groups of parameters are considered in this
tudy: route-dependent parameters (available in DPS databases)
nd route-independent parameters (not from DPS databases).

The route-dependent parameters considered in this study
nclude:

Lane number (x1)
Weather (x2)
Population density (x3)

Several route-independent parameters that affect accident fre-
uency are as follows:

Truck configuration (y1)
Container capacity (y2)

Driver experience (y3)

The parameters were selected to represent the effects of various
onditions including road, truck, environment, and carrier related
onditions.
ign material on surface; 4, high water or flood debris; 5, slick surface; 6, obstruction
ruction.
yond shoulder.
s; 4, non intersection.

Since the affecting parameters are available from more than a
single source, frequency assessment efforts need to incorporate
data from different sets. This has been accomplished as follows:
basic accident frequencies based on route-dependent parameters
are derived from the DPS database. Then, the effects of route-
independent parameters on accident frequencies are derivable
from other databases such as HMIS, or by incorporating expert
knowledge. It is essential to use fuzzy logic in the proposed method-
ology for the following two reasons: (1) the information available
in HMIS is on nationwide transportation activities, while the data
derived from DPS is for specific roads, i.e., data obtained from HMIS
cannot be applied directly; (2) the effects of several of the param-
eters on the frequency cannot be derived from any database; thus,
expert judgment must be employed in the assessment.

To summarize, the procedure to estimate accident frequency is
as follows:

(1) Number of accidents is derived from the DPS databases as a
function of route-dependent parameters.

(2) The corresponding vehicle-mile data are obtained from state
DOT’s or transportation institutes and from the 2002 CFS. The
basic accident frequency is obtained by dividing the number of
accidents by the number of miles traveled.

(3) The basic accident frequency is modified by considering
the effects of route-independent parameters. Fuzzy logic is
employed to incorporate expert knowledge. The membership
functions of these parameters are built based on the data avail-
able in the HMIS database or based on expert experience.

The flow chart in Fig. 1 presents the process of utilizing the
variety of data sources to establish an accident frequency assessor.

Following the development of the methodology, a case study
assessment of HazMat accident frequency on a section from Texas
highway US 290, will be presented.

3.3. Basic accident frequency assessment

Table 1 consists of data extracted from the Texas DPS database,
which contains records on accidents that occurred on US 290 in

1999. A large number of parameters are collected to record infor-
mation on the conditions of each accident (see first row of Table 1).
In this study, we incorporate the effects of three parameters from
DPS in the model. In the DPS databases, most of the parameters are
treated as linguistic variables, and the numeric values in the table
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the ultimate accident frequency is expressed as:
Fig. 1. Model for estimation of accident frequency.

epresent the values of those linguistic parameters. For example,
he variable “surface condition” has four linguistic values: 1, dry; 2,
et; 3, muddy; and 4, snowy/icy. A brief definition of each entry

evel for the parameters is presented at the bottom of Table 1.
DPS data for 10 years (from 1992 to 2001) is used in this study.

he data was sorted by using Matlab to first obtain the number
f accidents under all the given conditions in the databases. Then
he number of accidents under any condition was estimated as a
unction of the three route-dependent parameters. An appropriate
ount data model was needed for the estimation. Four analytical
pproaches were considered for this purpose: linear regression,
oisson regression, negative binomial model, and Bayesian estima-
ion. The following paragraphs discuss these approaches.

Early works in empirical analysis used multiple linear regression
models. However, these models suffer from several method-
ological limitations and practical inconsistencies. The two major
deficiencies are: (a) linear regression assumes a normal distri-
bution of the dependent variable, which is not valid for count
(accident) data, and (b) linear regression may produce negative
estimates for the dependent variable.
The Poisson model has several advantages in comparison to the

normal regression model. It assumes that the data follows a
Poisson distribution, a distribution frequently encountered when
events are counted. Despite its advantages, Poisson regression
assumes that the variance and mean of the dependent variable are
equal. However, it is quite common for the variance of data to be

Fig. 2. Schematic representation of an algorithm
aterials 167 (2009) 374–382 377

substantially higher than the mean. This phenomenon is known
as “over-dispersion.” Over-dispersion leads to invalid t-tests of
the estimated parameters.

• The negative binomial regression model has the same advantage
as the Poisson model, in that it assumes a distribution frequently
encountered when events are counted. At the same time, it does
not have the restriction that the variance and mean of the depen-
dent variable have to be equal: it allows the variance of the
dependent variable to be larger than the mean.

• Bayesian estimation can combine sample information with other
information that may be available prior to collecting the sample.
In a Bayesian model, each input independent variable has a prob-
ability distribution that is a function of one parameter (known as
prior). This approach is useful when uncertainty exists in input
variables. However, in DPS databases, the four affecting parame-
ters have been defined and categorized.

Therefore, the negative binomial regression model is the best
choice to assess the number of accidents. The regression model is
derived from the statistical software SAS, thereby estimating the
number of accidents under any condition.

Exposure data was obtained from state DOT or transportation
institutes and the 2002 CFS. Since the number of accidents is a func-
tion of route-dependent parameters, the corresponding number of
miles traveled needs to consider the effects of the same parameters,
i.e., the exposure data must be disaggregated by the same factors.

Finally, the basic accident frequency was obtained by dividing
the number of accidents by the number of miles traveled. This
frequency is expressed as fbasic(x1,x2,x3). Fig. 2 is a schematic repre-
sentation of the algorithm of estimation of basic accident frequency.

3.4. Modification to the basic accident frequency data

Basic frequency data needed to be modified to incorporate the
effects of the following route-independent parameters: truck con-
figuration (y1), container capacity (y2), and driver experience (y3).
These three parameters are not road-related variables, and their
effects on the frequency are independent from road conditions. In
this study, fuzzy Mamdani models [12] were employed to assess
the effects of y1, y2, and y3 on the frequency. A modifier, expressed
as mi (i = 1–3), was generated for each of these three parameters;
fultimate = fbasic × (m1 × m2 × m3)

y1, y2, and y3 are treated as linguistic variables. The frequency
modifiers are viewed as linguistic variables as well. Each linguis-

of estimating basic accident frequency.
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Fig. 3. Control sect

ic variable was defined by several fuzzy sets. The membership
unction for each fuzzy set was determined either by expert expe-
ience or from available data. Analysis was performed on the HMIS
atabase to develop the membership functions for truck configura-
ion. The membership functions for driver experience and container
apacity were determined based on expert experience.

There is as yet no fixed, unique, and universal rule or criterion for
electing a membership function for a particular fuzzy set. A good
embership function is determined by the user based on his/her

cientific knowledge, working experience, and recognition of the
ctual need for the particular application in question.

To increase membership functions’ quality, when expert knowl-
dge is utilized, it is necessary to apply the following two
rocedures: (1) carefully select the experts; and, (2) control for
ubjectivity.

Experts selected for the procedure in this study are nationally
nd internationally recognized loss control experts, each one hav-
ng more than 20 years experience in Quantitative Risk Analysis

ith emphasis on Probabilistic Risk Assessment. To control for sub-
ectivity, group decision making procedures such as Delphi [16] or
nalytical Hierarchy Process [17] are needed to aggregate the data

rom experts. In this study we utilized Delphi.
When input functions were established, the fuzzy “if-then” rules

ere built to associate each affecting variable, yi, to the correspond-
ng modifier, mi. For example, driver experience (y3), as shown in
ig. 4, is expressed by three fuzzy sets: novice, medium, and expe-
ienced. The driver experience modifier variable (m4), as shown in
ig. 5, also includes three fuzzy sets: low, medium, and high.

The “if-then” rules were set up as:

If driver experience is novice, then the driver experience modifier is
high.
If driver experience is medium, then the driver experience modifier
is medium.
If driver experience is experienced, then the driver experience mod-
ifier is low.
After setting-up the rules, defuzzification needs to be performed
o obtain a numerical output value. Defuzzification is the process of
roducing a quantifiable result in fuzzy logic. A fuzzy system has a
umber of rules that transform a number of variables into a “fuzzy”
ap for Houston TX.

result, that is, the result is described in terms of membership in
fuzzy sets.

A useful defuzzification technique must first combine the results
from the rules. The most typical fuzzy set membership function has
the graph of a triangle. If this triangle were to be cut in a straight
horizontal line somewhere between the top and the bottom, and
the top portion were to be removed, the remaining portion forms
a trapezoid. Typically, the first step of defuzzification is chopping
off parts of the triangle to form trapezoids (or other shapes if the
initial shapes were not triangles). For example, if the output has
“low (15%)”, then the area of the triangle from 15% and up will be
removed. In the most common technique, the trapezoids from all
input functions are then superimposed one upon the other, forming
a single geometric shape. Then, the centroid of this shape, called the
fuzzy centroid, is calculated. The x coordinate of the centroid is the
defuzzified value.

FIS editor in Matlab was used in this study to defuzzify the pro-
cess based on input data in order to derive the output modifier.
The value obtained after the defuzzification on the driver experi-
ence parameter was the driver experience modifier (m3) as shown in
Fig. 10. Other modifiers were obtained similarly.

4. Case study

As mentioned earlier, this case study addresses sections from US
290 in Texas, a road connecting Houston and Austin. Fig. 3 presents
the control section map for the Houston area. The sections under
study are between Highway 610 and Highway 6.

4.1. Calculation of number of accidents by SAS

As previously noted, DPS datasets from 1992 to 2001 were
employed in this study, with 9536 accidents recorded for this
period. The data were sorted by Matlab and input into SAS.
4.1.1. Models estimation
As described in Section 3.3, the negative binomial regression

model was employed to assess the number of accidents. Eq. (2) is
the standard format for negative binomial regression. The number
of accidents under any conditions (denoted as POP, NUMN LN, and
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Table 2
Parameter estimation.

Parameter Parameter categories Parameter estimates

ˇ0 = 3.1703
POP (ˇ1) 0 −1.5727

1 −6.0371
3 −1.7244
4 −2.2201
9 0

NUMN LN (ˇ2) 4 2.3151
5 −2.359
6 2.6869
8 2.5499

10 0

WEATHER (ˇ3) 1 1.9717
2 0

Table 3
Parameter meaning in DPS.

Parameter Parameter categories Parameter meaning

POP (ˇ1) 0 Rural
1 Towns under 2499 population
3 2500–4999 population
4 5000–9999 population
9 250,000 population and over

NUMN LN (ˇ2) 4 Number of lanes = 4
5 Number of lanes = 5
6 Number of lanes = 6
8 Number of lanes = 8

W

W
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w
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ˇ
s

m
p

b
e
t
w
d

T
E

E

W
1

2

10 Number of lanes = 10

EATHER (ˇ3) 1 Clear (cloudy)
2 Raining (other)

EATHER) was estimated using this equation:

(i, j, k) = e(ˇ0+ˇ1i+ˇ2j+ˇ3k) (2)

here N: number of accidents, i, j, k: notations for population den-
ity, number of lanes, weather condition, ˇ0: intercept of regression
quation, ˇ1: regression coefficient for variable population density,
2: regression coefficient for variable number of lanes, ˇ3: regres-
ion coefficient for variable weather condition.

The estimated negative binomial regression coefficients for the
odel are shown in Table 2. The definitions of each value of the

arameters of DPS are given in Table 3.
Negative binomial distribution is a discrete probability distri-
ution. It can be used to describe the distribution arising from an
xperiment consisting of a sequence of independent trials, subject
o several constraints. In a series of independent Bernoulli trials,
ith constant probability p of a success, let the random variable X
enote the number of trials until r successes occur. Then X has a

able 4
xposure (vehicle miles) data for control sections 58 and 59 on US290.

xposure data (vehicle miles) NUM LN

4

eather
POP 0 498870024

1 –
3 444307187
4 243085504
9 54087951

POP 0 26256317
1 –
3 23384589
4 12793974
9 2846734
aterials 167 (2009) 374–382 379

negative binomial distribution with parameters p and r = 1, 2, 3,. . .,
and

f (x) =
(

x − 1
r − 1

)
(1 − p)x−rpr

for x = r, r + 1, r + 2, . . ..
The dependent variable (number of accidents) is a count vari-

able, and the regression models the log of the expected count as a
linear function of the predictor variables, which include population
density, number of lanes, and weather condition. We can interpret
each regression coefficient as follows: for 1 unit change in the pre-
dictor variable, the difference in the logs of expected counts of the
response variable is expected to change by the respective regression
coefficient, given the other predictor variables in the model are held
constant.ˇ0, Intercept: This is the negative binomial regression esti-
mate when all variables in the model are evaluated at zero. In this
study, when the population density, number of lanes, and weather
condition are zero, the log of the expected count for accidents is
3.1703 units.

ˇ1, ˇ2, ˇ3, Coefficients: This is the negative binomial regression
estimate for 1 unit increase in the respective parameter categories,
given the other variables are held constant in the model. For exam-
ple, if the weather category were to increase 1 unit at category 0,
the difference in the logs of expected accident counts would be
expected to increase by 1.9717 units, while holding the other vari-
ables in the model constant.

4.1.2. Over dispersion and goodness of fit
While Poisson distribution is preferred for the suggested model,

it was rejected due to over dispersion [13]. Negative binomial dis-
tribution is not restricted by over dispersion. Negative binomial
regression was accepted following a Pearson’s chi-square to test
for goodness of fit (˛ = 0.05).

4.2. Exposure data assessment

Exposure data for US 290 was obtained from the Texas Trans-
portation Institute (TTI). The exposure data was disaggregated by
the number of lanes and population density group. The disaggre-
gated data was then segmented further to incorporate the effects
of weather.

As stated in Section 3.2, weather conditions such as rain, fog,
storms, icing, wind, or tornado conditions can influence accident
frequency. With respect to the location of the route, the rain condi-
tion will affect the accident frequency more than the others, since

it occurs much often than fog, storms, icing, or tornado in Texas.
Wind conditions have much less impact on accident frequency than
do rain conditions. Therefore, only rain conditions are considered
as a weather impact factor. According to the National Climate Data
Center [14], the normal annual precipitation in this area is 47.84 in.

5 6 8 10

1405378 951118019 – 3931089
– 4152767 – –
– 14353884654 – –
– 213621596 – –
– 2601401642 1447712804 249977292

73967 50058843 – 206899
– 218566 – –
– 755467613 – –
– 11243242 – –
– 136915876 76195410 13156700
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ters. These parameters are passenger, single unit, single trailer, and
Fig. 4. Driver experience membership function.

he rain rate was modeled by Crane [15], whose study shows that
he percentage of raining time over a year in the Houston area is
bout 3.9%. The annual precipitation assessed by multiplying the
aining rate by the raining time is about 53.3 in., very close to the
ata reported by National Climate Data Center. Thus, the assess-
ent by Crane [15] was employed here, but was approximated as

% of the raining percentage over a year. We assumed that weather
onditions would affect the corresponding vehicle mile data equally
ver the number of lanes and population groups.

The completely disaggregated exposure data are shown in
able 4. By dividing the estimated number of accidents (calculated
n section 4.1) by the corresponding exposure data (listed in Table 4),
he basic accident frequency was calculated.

.3. Fuzzy logic modification

The basic frequency data was modified to incorporate the effects
f truck configuration (y1), container capacity (y2), and driver experi-
nce (y3), which were treated as linguistic variables. The frequency
odifiers were viewed as linguistic variables as well. Each linguis-

ic variable was defined by several fuzzy sets, and the membership
unction for each fuzzy set was determined either by experts or
rom data, as described earlier.

The membership function plots and the corresponding modi-
er plots for driver experience and container capacity are shown in
igs. 4–7.

A fuzzy set description of driver experience is given in Fig. 4,

hich captures the essence of the gradations between experience

anges. Three fuzzy sets represent the different experience groups,
novice, medium, and experienced. Each membership function in
he figure is represented by a curve that indicates the assignment of

Fig. 5. Driver modifier membership function.
Fig. 6. Container capacity membership function.

a degree of membership in a fuzzy set to each variable within the
domain of the variable involved – driver experience. When driver
experience is zero, the driver is almost completely a novice. The
fuzzy set describing the driver experience modifier (presented in
Fig. 5), includes three fuzzy sets representing different degrees of
impact of driver experience on accident frequency. These degrees
are low, medium, and high. The fuzzy sets in Fig. 5 have been estab-
lished similarly to the sets in Fig. 4.

Three fuzzy sets are assigned for container capacity for the fol-
lowing memberships: small, medium, and large. The membership
functions for the three curves are assigned symmetrically along the
domain of the container capacity (gallons), as shown in Fig. 6. If the
container capacity is 10,000 gallons or higher, the degree of mem-
bership in the large fuzzy set is equal to 1. Fig. 7 presents the fuzzy
sets for the capacity modifier. Similar to Fig. 6, three variables or
fuzzy sets are assigned for the capacity modifier: low, medium, and
high. It is important to mention that even though the total num-
ber of the fuzzy sets for the input parameter container capacity is
equal to that for the output parameter capacity modifier in this
study, it is not necessary that the number of fuzzy sets for input
and output parameters be equal for fuzzy logic analysis. The fuzzy
“if-then” rules will relate all the input fuzzy sets and output fuzzy
sets, regardless of the number of input or output fuzzy sets.

The four fuzzy sets in Fig. 8 are for truck configuration parame-
double trailer. Harwood and Russell [5] studied the effects of truck
configuration on accident frequency. Their study shows that acci-
dent frequency can increase by almost 50% if the truck configuration

Fig. 7. Container modifier membership function.
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Fig. 8. Truck configuration membership function.
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Fig. 11. Effects of number of lanes and population density on accident frequency.

Fig. 12. Effects of container capacity and truck configuration on accident frequency.
Fig. 9. Configuration membership function.

s changed significantly. Therefore, to define the configuration mod-
fier, a range from 0.8 to 1.2 is selected, which results in a median
f 1 and a maximum of a 50% increase (from 0.8 to 1.2). Four fuzzy
ets are defined for the configuration modifier: low, medium, high,
nd extremely high, as shown in Fig. 9.

After the determination of membership functions, the fuzzy “if-
hen” rules were established. For any given input data for route-
ndependent parameters, the corresponding modifier was derived
rom this fuzzy model. Fig. 10 illustrates the defuzzification process
o derive the modifier for driver experience, as well.

.4. The effects of number of lanes, truck configuration,
opulation density, and road condition on the frequency
Figs. 11–13 and Table 5 present the effects of number of lanes,
ruck configuration, population density, and road condition on the
requency. Fig. 13. Effects of weather conditions on accident frequency.

Fig. 10. Defuzzification process with Matlab.
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Table 5
Effects of Driver experience on accident frequency.

Driver experience (normalized) Driver modifier Accident frequency (accident/vehicle mile)
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.1 1.14

.6 0.791

.8 0.86

Increases in population density and in number of lanes led to an
ncrease in the frequency, as shown in Fig. 11. Also, as this figure
ndicates, in rural areas, the number of lanes did not impact acci-
ent frequency very much, i.e., when population density is enough

ower, the number of lanes may not have a noticeable impact on
ccident frequency. Fig. 13 shows that weather conditions signifi-
antly affected frequency. Accident frequency increased under rainy
eather in comparison to the frequency under clear weather. The

ncrease was significantly higher when the number of lanes was six
nd the population group was between 5000 and 10,000.

As for route-independent parameters, an increase in both the
omplexity of vehicle configuration and container capacity resulted
n an increased frequency (see Fig. 12). Fig. 4 illustrates the effects of
river experience. The accumulation of driving experience reduced
he probability of an accident.

. Summary

This paper presents a methodology, based on empirical data,
o estimate accident frequency of HazMat transportation. The
uggested integrated models incorporated the effects of both route-
ependent and route-independent variables. Route-dependent
ariables included number of lanes, weather conditions, and
opulation density. Route-independent variables were truck con-
guration, container capacity, and drivers’ experience. Data from
variety of publicly available accident databases were utilized to

stablish a framework for estimating frequencies. Fuzzy logic was
sed to facilitate membership functions for the above six variables.
hen, the methodology was implemented on a segment of highway
S 290 in Texas, to establish frequency values for the six variables.

The proposed methodology provides fundamental information
hat is required to perform overall risk analysis along a route. The
ethodology was established as part of an effort to develop a Haz-
at transportation optimization procedure. It is important to note,

hough, that this model provides estimations only. However, the
odel can be used as a basis for the development of a methodol-

gy to predict potential accidents. These could include predictive

[

[

1.65821E-06
1.15057E-06
1.25093E-06

models for the number, rate, frequency, and severity of accidents
using past accident information, which then can be analyzed for
sensitivity.
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